The antitumor ether lipid edelfosine (ET-18-O-CH₃) induces apoptosis in H-ras transformed human breast epithelial cells: by blocking ERK1/2 and p38 mitogen-activated protein kinases as potential targets

Hye-Kyung Na PhD and Young-Joon Surh PhD

National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Seoul, South Korea

We previously reported that a novel alkylphospholipid type antitumor agent edelfosine (ET-18-O-CH₃; 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine) induced apoptosis in human breast epithelial cells transfected with the H-ras oncogene (MCF10A-ras) which was causally linked to cyclooxygenase-2 (COX-2) up-regulation and production of 15-deoxy-Δ12,14-prostaglandins J₂ (15d-PGJ₂). ET-18-O-CH₃ treatment also enhanced the production of prostaglandin E₂ (PGE₂), a major COX-2 product. In this study, we found that ET-18-O-CH₃ treatment resulted in elevated mRNA expression of the PGE₂ receptor subunit, EP2 receptor. Exogenously added PGE₂ inhibited the growth of MCF10A-ras cells and induced proteolytic cleavage of caspase 3. ET-18-O-CH₃ also inhibited constitutive activation of ERK1/2, p38 MAPK, and Akt/protein kinase B, which was blunted by a selective COX-2 inhibitor SC58635. In addition, ET-18-O-CH₃ inhibited DNA binding activity of NF-κB in MCF10A-ras cells, and this was again attenuated by SC58635. Based on these findings, it is likely that ET-18-O-CH₃ inactivates ERK1/2, Akt, and NF-κB signaling via COX-2 induction in MCF10A-ras cells, thereby inducing apoptosis of these cells.

Key Words: ET-18-O-CH₃, edelfosine, apoptosis, COX-2, MCF10A-ras cells

INTRODUCTION

A synthetic ether lipid edelfosine (ET-18-O-CH₃; 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine* structure shown in Fig. 1), has been found to exert potent anti-tumorigenic effects. The compound has been known to be a potent inducer of apoptosis in several tumor cell lines and primary tumor cells from cancer patients. Unlike most conventional chemotherapeutic drugs, ET-18-O-CH₃ does not target DNA but rather acts on the tumor cell membranes, thereby inducing apoptosis. The molecular mechanism underlying ET-18-O-CH₃-induced apoptosis is associated with inhibition of de novo synthesis of phosphatidylycerol at the endoplasmic reticulum. Inhibition of protein kinase C, phosphatidylinositol 3-kinase, and coenzyme A-independent transacylase, as well as the blockade of arachidonate-phospholipid remodelling, also contributed to ET-18-O-CH₃-induced apoptosis. In addition, ET-18-O-CH₃-induced apoptosis was accompanied by intracellular activation of the death receptor Fas/CD95 and its recruitment together with downstream signal molecules into lipid rafts, independently of FasL ligand.

There is a substantial body of data supporting the idea that cyclooxygenase-2 (COX-2) overexpression provides tumor cells with a survival advantage, by conferring resistance to apoptosis and increasing invasiveness or angiogenesis. Selective COX-2 inhibitors have been shown to exert anti-carcinogenic activity in vivo and in vitro experiments. However, recent reports have suggested that the induction of COX-2 does not necessarily contribute to cell survival or tolerance in response to proapoptotic stimuli. Certain anticancer agents with pro-apoptotic activity were found to upregulate COX-2 expression in human hepatic myofibroblasts and neuroglioma cells. Thus, COX-2-derived prostaglandins were shown to inhibit DNA binding activity of NF-κB in MCF10A-ras cells, and this was again attenuated by SC58635. Based on these findings, it is likely that ET-18-O-CH₃ inactivates ERK1/2, Akt, and NF-κB signaling via COX-2 induction in MCF10A-ras cells, thereby inducing apoptosis of these cells.

Key Words: ET-18-O-CH₃, edelfosine, apoptosis, COX-2, MCF10A-ras cells

Corresponding Author: Prof. Young-Joon Surh, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
Tel: +82 2 880-7845; Fax: +82 2 874-9775
Email: surh@plaza.snu.ac.kr
Manuscript received 9 September 2007. Accepted 3 December 2007.
(PGs) are likely to be implicated in sensitizing these cells to apoptotic death. In this context, it is noticeable that some COX-2 products induced apoptosis in several types of cancer cells. We previously reported that up-regulation of COX-2 expression and subsequent production of 15-deoxy-D_{12,14}-PGJ₂ (15d-PGJ₂), a ligand of peroxisome proliferator-activated receptor gamma (PPARγ), induced apoptotic death of the ras-transformed human mammary epithelial (MCF10A-ras) cells treated with ET-18-O-CH₃.

In the present study, we found that another COX-2 product prostaglandin E₂ (PGE₂) could also induce apoptosis in the MCF10A-ras cells treated with ET-18-O-CH₃. In addition, ET-18-O-CH₃-induced apoptosis as well as COX-2 upregulation was associated with the suppression of extracellular-signal-regulated kinase1/2 (ERK1/2) and Akt.

MATERIALS AND METHODS

Cell culture
The MCF10A cell line transfected with a virus carrying the H-ras oncogene (MCF10A-ras) was cultured as described previously.

Cell growth assay
MCF10A-ras cells at 50-60 % confluence were exposed to the medium containing chemicals. Cell viability was determined by the conventional MTT reduction assay. All samples were prepared in triplicates.

Western blot analysis
Protein isolation, electrophoresis and immunoblot analysis were conducted as described previously. Antibodies against COX-2, extracellular signal regulated kinase1/2 (ERK1/2), pERK1/2, p38 mitogen-activated protein kinase (MAPK), pp38 MAPK, c-Jun N-terminal kinase (JNK), pJNK, Akt and pAkt were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Cleaved caspase 3 antibody was purchased from Cell Signaling Technology (Beverly, MA, USA).

Reverse-transcription polymerase chain reaction (RT-PCR)
Isolation of total RNA and reverse transcription were performed as previously reported. The primer pairs were as follows (forward and reverse, respectively): EP2, 5’-GCCACGATGCTCATCTCTTCGCC-3’ and 5’-CTTGTGTTCTTAATGAAATCCGAC-3’; EP4, 5’-GCCACGATGCTCATCTCTTCGCC-3’ and 5’-CTTGTGTTCTTAATCAAATCCGAC-3’.

Electrophoretic mobility shifting assay
The oligonucleotide harboring the NF-κB consensus sequence (Promega, Medicine, USA) was end-labeled with [γ-³²P]ATP using T4 polynucleotide kinase (Takara, Japan). Electrophoretic mobility shifting assay (EMSA) was conducted according to the previous report.

RESULTS

ET-18-O-CH₃ induced COX-2 and EP2 expression
When MCF-10A-ras cells were treated with a concentration of 2.5 μM ET-18-O-CH₃, it induced COX-2 expression in a time dependent manner with concomitant proteolytic cleavage of caspase 3 as determined by immunoblot analysis in MCF10A-ras cells (A, B). MCF10A-ras cells were treated with 2.5 μM ET-18-O-CH₃ for an indicated time, and mRNA expression of EP2 receptor was as determined by RT-PCR (C).

Figure 2. ET-18-O-CH₃ induced expression of COX-2 and the proteolytic cleavage of caspase 3 as determined by immunoblot analysis in MCF10A-ras cells (A, B). MCF10A-ras cells were treated with 2.5 μM ET-18-O-CH₃ for an indicated time, and mRNA expression of EP2 receptor was as determined by RT-PCR (C).

Figure 3. PGE₂ exerted anti-proliferative effects in MCF10A-ras cells. Cell viability was measured by conventional MTT reduction assay after the treatment of PGE₂ (200 μM) for 24 h (A). The Bars represent the mean ± S.E.M. of triplicate experiments. PGE₂ induced apoptosis in MCF10A-ras cells as evidenced by caspase-3 cleavage (B).
regulation of cell proliferation and survival. To delineate such as ERK1/2, JNK and p38, play an important role in

It has been known that Akt/protein kinase B and MAPKs, MAPK and Akt

ET-18-O-CH₃ inhibited activation of ERK1/2 and p38 MAPK through phosphorylation, but not JNK (Fig. 4A). A selective COX-2 inhibitor, SC58635, attenuated the ET-18-O-CH₃-induced suppression of ERK1/2 and p38 MAPK phosphorylation (Fig. 4B). In addition, ET-18-O-CH₃ inhibited Akt activation at 1 h as assessed by the kinetic study (Fig. 5A). ET-18-O-CH₃-induced Akt inactivation was also blunted by SC58635 (Fig. 5B).

ET-18-O-CH₃ inhibited the DNA binding activity of NF-κB

The ubiquitous transcription factor, nuclear factor-kappa B (NF-κB), is involved in: inflammation, cell proliferation, and apoptosis. NF-κB activation appears to be facilitated through cooperation with CREB (cyclic AMP-responsive element binding protein)-binding protein (CBP). NF-κB is a major downstream molecular target of both ERK1/2 and Akt. Therefore, we conducted EMSA to determine whether the ET-18-O-CH₃-induced apoptosis is associated with down-regulation of NF-κB. ET-18-O-CH₃ inhibited DNA binding activity of NF-κB, which was again attenuated by SC58635 (Fig. 6).

DISCUSSION

In this study we have found that the antitumor alkyl-lysophospholipid ET-18-O-CH₃ induced apoptosis in MCF10A-ras cells, which was associated with the induction of COX-2 expression and subsequent production of PGE₂. In our previous study, we observed that ET-18-O-CH₃-induced COX-2 expression and production of 15d-PGJ₂ may be involved in ET-18-O-CH₃-induced apoptosis in MCF10A-ras cells. Therefore, some products of COX-2 play an important role in the induction of apoptosis by ET-18-O-CH₃. In addition, we have found that ET-18-O-CH₃ inhibited the activation of ERK1/2 and Akt, which are central upstream kinases in the proliferation and survival pathways. NF-κB is a major transcription factor regulating the expression of the antiapoptotic protein Bcl-2. Therefore, down regulation of NF-κB by ET-18-O-CH₃ is likely to reduce Bcl-2 levels, leading to the induction of apoptosis in MCF10A-ras cells. Additional studies are necessary to unravel the molecular link between the COX-2 inducing effects of ET-18-O-CH₃ and its anti-proliferative activity in MCF10A-ras cells and other transformed or cancerous cell lines.

ACKNOWLEDGMENTS

This study was supported by a grant (KOSEF 1999-2-220-007-3) from the Korea Science and Engineering Foundation (KOSEF) for Biofoods Research Program.

AUTHOR DISCLOSURES

Hye-Kyung Na and Young-Joon Surh, no conflicts of interest.

REFERENCES

2. Candal FJ, Bosse DC, Vogler WR, Ades EW. Inhibition of

